EMB2473/MIRO1, an Arabidopsis Miro GTPase, Is Required for Embryogenesis and Influences Mitochondrial Morphology in Pollen W
نویسندگان
چکیده
The regulation of mitochondrial biogenesis, subcellular distribution, morphology, and metabolism are essential for all aspects of plant growth and development. However, the molecular mechanisms involved are still unclear. Here, we describe an analysis of the three Arabidopsis thaliana orthologs of the evolutionarily conserved Miro GTPases. Two of the genes, MIRO1 and MIRO2, are transcribed ubiquitously throughout the plant tissues, and their gene products localize to mitochondria via their C-terminal transmembrane domains. While insertional mutations in the MIRO2 gene do not have any visible impact on plant development, an insertional mutation in the MIRO1 gene is lethal during embryogenesis at the zygote to four-terminal-cell embryo stage. It also substantially impairs pollen germination and tube growth. Laser confocal and transmission electron microscopy revealed that the miro1 mutant pollen exhibits abnormally enlarged or tube-like mitochondrial morphology, leading to the disruption of continuous streaming of mitochondria in the growing pollen tube. Our findings suggest that mitochondrial morphology is influenced by MIRO1 and plays a vital role during embryogenesis and pollen tube growth.
منابع مشابه
EMB2473/MIRO1, an Arabidopsis Miro GTPase, is required for embryogenesis and influences mitochondrial morphology in pollen.
The regulation of mitochondrial biogenesis, subcellular distribution, morphology, and metabolism are essential for all aspects of plant growth and development. However, the molecular mechanisms involved are still unclear. Here, we describe an analysis of the three Arabidopsis thaliana orthologs of the evolutionarily conserved Miro GTPases. Two of the genes, MIRO1 and MIRO2, are transcribed ubiq...
متن کاملArabidopsis thaliana MIRO1 and MIRO2 GTPases Are Unequally Redundant in Pollen Tube Growth and Fusion of Polar Nuclei during Female Gametogenesis
MIRO GTPases have evolved to regulate mitochondrial trafficking and morphology in eukaryotic organisms. A previous study showed that T-DNA insertion in the Arabidopsis MIRO1 gene is lethal during embryogenesis and affects pollen tube growth and mitochondrial morphology in pollen, whereas T-DNA insertion in MIRO2 does not affect plant development visibly. Phylogenetic analysis of MIRO from plant...
متن کاملYeast Miro GTPase, Gem1p, regulates mitochondrial morphology via a novel pathway
Cell signaling events elicit changes in mitochondrial shape and activity. However, few mitochondrial proteins that interact with signaling pathways have been identified. Candidates include the conserved mitochondrial Rho (Miro) family of proteins, which contain two GTPase domains flanking a pair of calcium-binding EF-hand motifs. We show that Gem1p (yeast Miro; encoded by YAL048C) is a tail-anc...
متن کاملMiro proteins coordinate microtubule‐ and actin‐dependent mitochondrial transport and distribution
In the current model of mitochondrial trafficking, Miro1 and Miro2 Rho-GTPases regulate mitochondrial transport along microtubules by linking mitochondria to kinesin and dynein motors. By generating Miro1/2 double-knockout mouse embryos and single- and double-knockout embryonic fibroblasts, we demonstrate the essential and non-redundant roles of Miro proteins for embryonic development and subce...
متن کاملStructural insights into Parkin substrate lysine targeting from minimal Miro substrates
Hereditary Parkinson's disease is commonly caused by mutations in the protein kinase PINK1 or the E3 ubiquitin ligase Parkin, which function together to eliminate damaged mitochondria. PINK1 phosphorylates both Parkin and ubiquitin to stimulate ubiquitination of dozens of proteins on the surface of the outer mitochondrial membrane. However, the mechanisms by which Parkin recognizes specific pro...
متن کامل